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About the Poor Decay of Certain Cross-Correlation 
Functions in the Statistical Mechanics of Phase 
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We introduce a method to  prove poor decay of certain cross-correlation func- 
tions which are closely related to the phase transition. The methods apply both 
to equal and nonequal times, which gives access to the dynamical regime. We 
establish a criterion which displays openly what happens when the Goldstone 
picture breaks down. Since no rudiments of translation invariance are needed 
the treatment covers phases in coexistence like, e.g., liquid-gas interfaces and 
completely inhomogeneous systems. Furthermore a perhaps surprising connec- 
tion with the breaking of time reflection invariance of the equilibrium state is 
established. 

KEY WORDS: Phase transitions; cluster properties; phase coexistence; 
time reflection invariance. 

1. INTRODUCTION 

In connection with phase transitions which consist of a spontaneous 
symmetry breaking of a continuous symmetry of the system under discus- 
sion, the "Bogoliubov inequality" has been frequently employed to exhibit 
the showing up of long-range correlations which are present in the pure 
phases of the system. They have their origin in long-lived collective excita- 
tions, the so-called Goldstone modes, which usually come into existence as 
a coherent effect when the phase transition sets in, producing, e.g., the 
famous [k[ -2 singularities in certain systems. See, e.g., Refs. 1-4, 8, or more 
recently 5 and 15. 
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But the Bogoliubov inequality provides access only to a special class of 
correlations, namely, the so-called autocorrelation functions of the symme- 
try breaking observable in the static regime, i.e., for equal times. Further- 
more, a rudimentary form of translation invariance is needed. Dynamical 
effects of the symmetry breaking have to be studied with the help of other 
methods (compare, e.g., Refs. 6 and 7 for quantum statistical mechanics, 9 
for classical statistical mechanics). They are much more involved and 
depend on the special shape of the Goldstone excitation branches under 
discussion. 

Furthermore there are other classes of physically relevant correlation 
functions like, e.g., the cross correlation between the generator density of 
the symmetry and the symmetry-breaking observable for equal, respec- 
tively, nonequal times, the poor clustering of which is a little bit surprising 
on various grounds (which will become apparent in the following). In 
particular we prove rigorously that even in the case where the static 
clustering is good there is an open set of time values such that the clustering 
becomes poor for the time difference t l - t  2 lying in this set. Thus the 
dynamical influence of the Goldstone mode is rigorously displayed. 

In addition to establishing access to a new class of correlation func- 
tions we do not need even a rudimentary form of translation invariance. 
That is, the whole field of phase transitions in inhomogeneous media is also 
covered. This extends results derived previously in the case of breaking of 
translation invariance in classical statistical mechanics (cf. Refs. 10 and t 1). 
To mention a few examples, phase transition taking place in an inhomoge- 
neous exterior field (e.g., the numerous superconducting phenomena), the 
interesting branch of phenomena related to phases in coexistence (i.e., 
phase boundaries, e.g., liquid-gas interfaces), the various vortex structures 
of superconductors of the second kind, etc. 

As a further surprise time reflection invariance enters the stage within 
this context, more precisely, the spontaneous breaking, respectively, non- 
breaking, of the equilibrium state under time reflection appears to be of 
relevance. This point will be discussed at the end of the paper. 

A short remark concerning time evolution should be appropriate. In 
this paper we definitely assume the existence of a time evolution a t acting 
upon the observables of the system (Heisenberg picture) in order to derive 
nonstatic results, that is, with A being an observable we have A (t) = a,(A), 
a t being an automorphism. It will depend on the system under discussion 
whether it is appropriate to consider ct t as being given independently of the 
concrete state ( �9 ) of the system or whether c~ t is dependent on the state 
under discussion. In any case, under mild technical assumptions one can 
implement ct t by a group of unitary operators U t provided the state is 
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invariant under o~t, i.e., 

( U  t �9 A �9 U _ , )  = (o~ , (A ) )  = ( A )  for every observable A (1) 

The construction of U t runs under the name Gelfand-Naimark-Segal 
construction (see, e.g., Chapter 4 in Ref. 16). Via Stone's theorem the 
existence of a suitable infinitesimal generator H is guaranteed, the concrete 
relation of which to the naively given Hamiltonian being, however, another 
story (compare, e.g., Ref. 13). 

2. THE DYNAMICAL NOTION OF SPONTANEOUS 
S Y M M E T R Y  BREAKING AND THE PROPERTY (G)  

Without intending to go into all the details, it seems useful to make 
some remarks about what we consider to be the "Goldstone phenomenon" 
and certain subtleties of the various assumptions made in this context. 

A symmetry is usually a mapping of the algebra of observables onto 
itself which does commute in a formal sense with the Hamilton operator, 
that is, it should also leave invariant the related Gibbs state. This is true in 
the finite volume situation. In the limit V---> oo one has to make precise 
what is actually meant by the notion "symmetry." A conserved symmetry is 
roughly a norm-preserving one-to-one mapping of the algebra of observ- 
ables which leaves the equilibrium state invariant, that is, with a denoting 
the symmetry: (i) ( o ( A ) )  = ( A )  for all A. But frequently one expects more 
on physical grounds. The formal invariance of the Hamiltonian is reflected 
by the invariance of the whole dynamics of the system under the symmetry, 
that is, (ii) ( a ( A ( t ) ) ) =  ( (a (A)) ( t ) )=  ( a ( A ) ) =  (A).  In other words, we 
have the following important additional property: 

Property (G): a .  a t = a t �9 a .  

In the following we will exclusively deal with a continuous one- 
parameter group of symmetries, as, which can always be accomplished by 
selecting a suitable subgroup. Then (i) and (ii) together establish what we 
consider to be a conserved symmetry. The symmetry is dubbed spontane- 
ously broken when (i) no longer holds with property (G) still being fulfilled. 
That is, invariance of the dynamics, noninvariance of the state. The 
breakdown of property (i) implies the existence of an observable A with 
(,,s(A)> ~ (A).  

We should, however, emphasize that this property (G) is by no means 
an obvious consequence of the formal invariance of the Hamiltonian under 
the symmetry. Since it will appear that it is exactly the suitable tool to 
eliminate all the range questions of the interaction in the context of SSB 
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there must be a considerable amount of deeper physics in it. In particular, 
its exact meaning has to be clarified and in what situations it may be 
violated. 

As to the first point, if the symmetry is spontaneously broken it cannot 
be implemented by a unitary operator in the representation space. So (G) 
and its breakdown have to be understood as statements about mappings 
applied to observables o(A ( t)) = (o(A ))( t) and o(A ( t)) ~ (cr(A))( t), respec- 
tively. The right sides of these relations have a clear meaning since o(A) is 
also a localized observable if A and hence a,(a(A)), is well defined. In 
order that o(A (t)) also have such an obvious meaning, A (t) should either 
still be sufficiently localized, which will be the case for sufficiently well- 
behaved interactions, or certain limiting processes have to be harmless in a 
certain sense. In the case of long-range interactions one might conceive that 
the origin of long-range tails in A (t), a result of a strong delocalizing of 
A(t)  as compared with A, can perhaps result in a o(A(t)) being different 
from (o(A))(t). 

The physical reason behind the possible breakdown of (G) may be the 
pushing up of the Goldstone mode, as is known, e.g., from superconductors 
(cf., e.g., Ref. 12, which is on the other hand perhaps not completely 
convincing because limits are several times interchanged, which is usually a 
delicate point in the presence of SSB). Another reason or perhaps the same, 
expressed only in a more mathematical form, may be the dependence of the 
dynamics of the observables on the actual state of the system as it is 
observed in certain mean-field models (see, e.g., Ref. 17, p. 136). Another 
interesting model in this context is the one-dimensional jellium with states 
breaking the translation invariance, while nevertheless with an exponential 
clustering of correlations (Ref. 18). (As to this last point I want to 
acknowledge a useful discussion with P. Martin and C. Gruber.) 

But in any case, since the breakdown of property (G) is probably also 
the breakdown of the Goldstone phenomenon proper (namely, the exis- 
tence of long-lived, low-lying Goldstone excitations), we consider it to be 
the defining relation of the full Goldstone phenomenon. On the other hand, 
since property (G) is at the core of this phenomenon the mechanisms of its 
possible breakdown are very interesting and should be studied separately. 

We want to condense now the Goldstone phenomenon in a single 
formula which will allow us to draw definite conclusions from it. Further- 
more the impact of property (G) is clearly exhibited. To this end we use the 
infinitesimal analog of (as(A)) ~ (A). 

So let Q be the formal generator of the one-parameter symmetry group 
under discussion and A the observable which displays the symmetry 
breaking. (Note that Q does not exist as a well-defined operator in the 
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representation space when the symmetry is spontaneously broken.) With 
q(x, t) the generator density we have 

lira ( ( [ q ( x , t ) , A ] ) d ' x = c v ~ O  (and independent of t! ) (2) 
V-~R 3 3 V 

The time independence of (2) is the crucial point in this context, which 
is frequently not clearly stated since most of the papers are dealing 
exclusively with the t = 0 case, that is, the static case. The time indepen- 
dence can be easily seen as follows: Time invariance of the equilibrium 
state and property (G) yield 

(os(A(t))) = (a t . os(A)) = (os(A)) (3) 

SSB implies the existence of an observable A such that (%(A))v  a (A),  
hence 

(o,(A(t)))  = (a t �9 os(A)) = (o,(A)) =/= (A)  (4) 

and in differentiated form (with A appropriately chosen such that 
d/  asl,=o( o,(A )) ~ 0), 

= lim ( [ s  A])  d ~=0(os(A 
v (-t))) 

_ d 
~=0(a , . o , ( A ) ) = l i m  ( [ f  q(x ,O)dx,  A ] ) = c  �9 (5) ds 

That a breakdown of property (G) will be connected with another type 
of long-range correlation can be seen as follows. Let us assume that the 
expression (2) is time dependent, and (for simplicity) that the generator 
density of the symmetry fulfils a local conservation law: 

Otq(x, t) = - V . j (x ,  t) (6) 

Assuming that it is allowed to interchange the limit and differentiation with 
respect to t we get 

O,f (Iq(x,t),A])d"x=- lim ( ( [ V . j ( x , t ) , A ] ) d ' x  
R-->o~ JKR 

= - lim s ( [ j ( x , t ) , A ] ) d ' - ' o  (7) 
R--) oo KR 

In this way, the possibility of a breakdown of (G) seems to be linked with a 
certain specific long-range correlation for t @ 0. 



122 Requardt 

3. THE LONG-RANGE x BEHAVIOR OF ( q ( x , t ) A )  T IN 
QUANTUM STATISTICAL MECHANICS 

We will start with the simpler quantum mechanical case. The system is 
allowed to be completely spatially inhomogeneous. With q(x, t) the genera- 
tor density of the symmetry and A the symmetry-breaking local observable, 
we want to show that (q(x, t)A) r cannot be an integrable function in x. To 
this end we will work with the Fourier transform of the above quantity, 
Jq~(k,0:), which in general in the thermodynamic limit will be a distri- 
bution. (In the translation-invariant case it is a measure; see, e.g., Refs. 6 
and 9.) 

In an equilibrium state we have the KMS property, which can be given 
the form 

GqA(k,0: ) = (1 - e-~'~ 0:) (8) 

with GqA the Fourier Transform of ([q(x, t),A]). As usual (see, e.g., Ref. 6 
and further references therein), the volume integration fvq(x,t)dx", 
V--~ oc, is performed by an integration over a set of sufficiently smooth 
functions ( fR (x) }: 

{10 for ,xl<~R (9) 
fR(X):= for Ix] i> R + e  

Now let us assume that (q(x, t)A) r is eL l with respect to x, hence the 
same does hold for ([q(x,t),A]). This entails that the Fourier transform 
with respect to x, feint J_ A (k, 0:)dw, is a continuous function in k. The same 

~r l(a2t does hold for f ( 1 -  e -  ) e  JqA(k,0:)d0:. Performing the limit V--> oo in 
(4) with the above class of functions { fR } corresponds to integrating with a 
class of functions {)~) in k space, the directed system converging toward a 
8 function 8(k). Under the above assumption this limit is well defined since 
the functions under discussion are continuous in k. Thus we have 

c = lim (d~k fR(k)(d0:ei~'(1 - e-B~)J(k,w) 
R--)~ d J 

= f d"ke (k ) fd0 :e '~  - e-B )J(k, 0:) 

= fd0:e~'~ - e -  r176 0:) (10) 

(where we dropped for simplicity the indices q,A). c was shown to be 
independent of t; hence the Fourier transform with respect to t is simply 
c .  8(0:): 

(1  - e Z~~ = c . 8 ( 0 : )  ( 1 1 )  

Since ( 1 -  e-Z~)veO for 0:=/=0 this entails that J(0,0:) is a distribution 
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concentrated in o~ = 0, therefore J(0, ~0) has the general structure: 

= X (12) 
n 

From (11) we can infer 

J ( 0 , ~ )  = c0~(r ) -I- Cl~(I)(r (13) 

with c~ = - / 3 -  ~ �9 c. Our next aim is to show that c~ is zero. 
We have 

where dEo~ 

f dnx (q(x,t)A) r= f dnx f e+~yq(x,O)dE~A) ~ 

= fe' 'f d"x(q(x,O)aE A)T, (14) 

is the spectral measure of the time evolution. (We can inter- 
change the dx and dE~ integration since dEo~ is a finite measure and 
(q(x, t)A) r is eL I with respect to x.) Thus we have the identity 

e(O, ~) a~ = f (q(x, O) aE:A )r d~ (15) 

that is, J(0,w) is a measure with respect to ~o. With (13) we can conclude 
J(0, o~)= Co6(W ) because 8(~ is evidently not a measure. (11) entails 
(1 - e-B+)Co �9 6 ( ~ ) =  0 = c .  6(w), hence c = 0 and limv_++([fvq(x,O)d"x, 
A]) = 0. In other words, there is no SSB. We have the following result: 

Theorem 1. With q(x,t) the generator density of the spontaneously 
broken continuous symmetry, A the symmetry-breaking observable, (q (x ,  
t)A) ~ is not integrable with respect to x for a set of t's with Lebesgue 
measure v a 0. 

4. ( q ( x , t ) A )  r IN CLASSICAL STATISTICAL MECHANICS 

The situation in classical statistical mechanics is slightly more compli- 
cated since Poisson brackets are not so easy to handle as commutators.  As 
a general frame of conceptual reference we refer to Ref. 9 and further 
references there. Continuous symmetries are assumed to act via exponentia- 
tion of Poisson brackets with suitable generators. Correspondingly we will 
discuss the expressions 

({q(x,t),A)), (q(x,t)A) T with 

(q(x,t),A)(X):= ~ ( Oq OA Oq OA ) % opj % 

X being a particle configuration in phase space. 

(16) 
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Our starting point will be the so-called dynamical KMS property of 
classical statistical mechanics which reads in Fourier transform form 

GqA ( k, co) = - flcoJqA ( k, co) (17) 

with G(k, co) the Fourier transform of ({q(x , t ) ,A }), J(k,  co) the Fourier 
transform of (q (x , t )A)  v, [see, e.g., formula (7) of Ref. 9]. A minor 
difference as compared with Chapter 3 arises from the fact that ({q(x,  t), 
A }) is not simply (q(x,  t)A) T -  (Aq(x ,  t)) r. In Chapter 3 it was sufficient 
to assume integrability of (q (x , t )A)  T to arrive at a contradiction. Here 
some additional remarks are necessary. 

In order that we can perform the limit R ---> ~ in 

c---liRm;fR(k)[;P~iwtG(k, co)dcoldk (18) 

under the integral feS~tG(k, co)dco has to be continuous in k = 0, in other 
words, it is sufficient to assume ( (q(x ,  t),A }) to be (L 1 with respect to x. 
As already indicated, this does not follow from (q(x,  t )A )~L  l in the realm 
of classical statistical mechanics. On the other hand, since { fR (x)} simulate 
the volume integration V--> ~ the limiting value c should not depend on 
the detailed form of fR (x). It should be sufficient that (fR (x)} approximate 
the function := 1 in a weak sense in the limit R--> oc; hence fR(k)--)6(k).  
In particular, the functions fR(x) need not be rotationally symmetric. 
Hence this independence makes it highly implausible that the finite value c 
comes about by an artificial destructive oscillating behavior of the various 
contributions of the integral while the function itself is not summable. So 
we should be allowed to take it for granted that ( (q(x ,  t),A }) is integrable 
in x. The long-range character should again come into play in the two- 
point function ( q( x, t)A ) r. 

Proceeding now in the same way as in Chapter 3 we arrive at 

c .  ~(co) = G(0,co) = - r ico .  J(0,co) (19) 

With (q(x ,  t)A) r integrable we have J(0, co) = c' �9 (~(co) and therefore c = 0, 
thus again no symmetry breaking. 

The o re m 2. With q(x, t), A having the meaning of Theorem 1, and 
provided that we can perform the limit in (18) under the integral, (q(x,  t) 
A ) r  is not integrable with respect to x for at least an open interval of t's 
when the symmetry is spontaneously broken. 

5. ANOTHER TYPE OF DECAY OF CORRELATION WITH A 
UNIVERSAL CLUSTERING BEHAVIOR 

In this chapter we will show that in addition to the discussion above 
systems with SSB display another kind of long-range correlation of a fairly 
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universal character, that is, there is always a type of decay of correlation 
only like Ix[-(~- t), dimension = n, irrespective of the physical model under 
discussion. We will perform the calculation for the quantum statistical case. 
As to classical statistical mechanics, this phenomenon is discussed in Ref. 9, 
Th. 3, and Ref. 10. 

So let q(x, t) be the local generator density, QR: = fx<Rq(x, O)d nx. We 
assume the interaction to be of finite range. Let HR be the Hamiltonian 
restricted to (x, lxl < R }. This means especially' that in the interaction part 
interaction only between points xi, Ixil < R is to be taken into account. Let 
A again be the symmetry-breaking observable, localized in the finite region 
A. With q(x) local, ([q(x,O),A]) has x support contained in A. For 
equilibrium states the relation 

(20) 

holds, with Ai, := e-'~IAem. Hence the right-hand side is v a 0 only for 
x ~ A .  

Remark. We want to mention that as long as A is not an analytic 
element with respect to H it is not obvious that Ai, is well defined for all 
0 < s < fl since e sL' is unbounded. It can be shown, however, that it is well 
defined for s < (1/2)fl in a concrete representation as above (see, e.g., Ref. 
13, Chapter 5.4.). Furthermore, while A is localized in a finite region A, this 
should usually not be the case for the analytic continuation A u, since the 
suppression of high frequencies by the e - ' ~  factor in Fourier space has a 
delocalizing effect in coordinate space. As to this point, the situation is 
simpler in classical statistical mechanics where the analogous quantity is 
~A {q(x),g}). 

We want to show now that, while the expression in (20) is localized in 
A, exhibiting thus the short-range order aspect of SSB, it nevertheless 
contains also the long-range order of SSB which is hidden in (20) by means 
of a peculiar mutually cancellation of terms having a long-range correla- 
tion. To this end we write (with d the range of the interaction) 

[ QR, H]=[ QR,HR+u]=[ QR+d,HR+d]-[ QR+d-QR,HR+d] (21) 

The first bracket on the right-hand side equals [ Q, H g . d  ] with Q taken 
in a formal sense, acting upon observables via the commutator. It is the 
typical feature of SSB that [Q, Hn] = 0, while even in the limit limn~o~ 
[QR,H] ~a O. This is the relic of the formal but incorrect statement [Q,H] 
= 0 (as a concrete example take, e.g., the Heisenberg ferromagnet where 
these relations can explicitly be verified). 
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With (21) we can now conclude 

c = liRm([ QR,A]) 

----lim--fXR+a'R(X)(fo~Auds'[q(x)'HR+a])dxR (22) 

with XR+a,R the characteristic function of the set {x,R < Ix[ < R + d). 
Hence, while ([ QR, A ]) = fxR([q(x),A]) dx --- fxR(fffAis ds [q(x), H] )  dx is 
an integral over a function having its support in the fixed domain A, it is 
equal to the integral over a function with support in (R < Ix[ < R + d)  
with R ~  oo! This comes about by a mutual cancelling of terms in 
(f~oAi~ds[q(x),H]) having long-range correlation. This balancing is de- 
stroyed in (~oAi~ ds [q(x), HR+d]). 

Owing to the local character of q(x) and the finite range of the 
interaction BR(X ) := [q(x),HR+d] has its support in a ball Ka(x ) around x 
with radius d. Thus we have 

e = l i m (  ((fiAisds. BR(x))dx (23) 
R JR<]xt<R+d\JO 

Assuming now that [(f~oAisdsBR(x)) ] < c'. Ix[ -("-1+~) we would get 
e = 0, that is, we can infer the following. 

Theorem 3. Assuming SSB of a continuous symmetry with q(x, t) 
the generator density, A a symmetry-breaking observable, B R (x) defined in 
(23), we have a long-range correlation between SoAisds and BR(X), the 
decay of which is weaker than Ix[ -("-1+')  for all e > 0 (a finite range of 
the interaction assumed). 

Remarks. (i) Since. we have in (23) an equality of both sides we are 
better off than in the case of the Bogoliubov inequality. One should expect 
in fact a behavior ,~[xt n- 1 instead of a < .  (ii) The R dependence of the 
quantity BR (x) is quite trivial. It has its origin simply in the fact that the 
intersection of Ka(x ) and (x [XR+a,R 4: 0) depends on the position of x in 
the interior of {x[xR+a, R v~0}. For example, for lattice systems one can 
easily extract a quantity from B R (x), which is then a finite sum, which does 
not have this R dependence and which still displays the long-range order. 

6. SOME SKETCHY REMARKS ABOUT THE IMPACT OF 
TIME REFLECTION SYMMETRY 

It seems to be a natural and harmless question wether the point t = 0 
always belongs to this set for which (q(x, t). A) displays poor clustering. 
But this is physically quite subtle. It is related to the breaking of an 
additional symmetry T, namely, time inversion invariance. When T is 
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conserved we can show that (q(x,O)A) r= 1/2 ([q(x,O),A]) holds, which 
yields an x support contained in support A. If T is also spontaneously 
broken this relation will usually no longer hold. 

Both situations will actually occur. For example, for a crystal T is 
conserved, hence (q(x, 0).  n(0)) r is well behaved, where q is the generator 
density of translations, n the particle density. For a classical crystal the 
situation is even more striking. We proved in Ref. 10, Chapter 3) that 
(q(y, 0). n(x, 0)) r =-- 0, while we know that there exists at least an open set 
of t's such that (q(y, t). n(x, 0)) r is not integrable! 

On the other hand there are many systems with T being broken, e.g., 
all the magnetic systems below the critical temperature, Bose liquids in the 
superfluid phase, etc. For example, for the free Bose gas can rigorously 
prove that (q(x, 0)- A)  r goes to zero like Ix[- 1. That  is, for T conserved we 
have a dynamical effect of the Goldstone mode since clustering is poor 
only for t v a 0, whereas with T broken we expect also a weak static decay of 
correlations. These interesting phenomena shall, however, be discussed in 
more detail elsewhere. 

The results of Chapter 5 are connected with the influence of boundary 
terms on bulk properties of the medium in the physical region where several 
phases can coexist. In this context we want to mention also Ref. 14. 
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